160909-F-ZS991-0062.JPG

WRIGHT-PATTERSON AIR FORCE BASE, OHIO (AFRL) – Internationally acclaimed Air Force Research Laboratory, or AFRL, researcher Dr. Benji Maruyama and his team are seeking industry and academic partners to help them transition open-source autonomous experimentation software, known as Educational ARES OS, to public school classrooms across the nation to help foster the next generation of young scientists.

Educational ARES OS, a self-driving research platform, combines automated robotics with artificially intelligent, or AI, algorithms to run its own experiments, record results and design and execute the next best steps to try to solve problems or find answers to research questions. It utilizes an iteration of the original ARES open-source software system that Maruyama and his team previously rolled out in 2021 to overwhelmingly positive acclaim, currently available to the public as a free Internet download.

Getting AI research robots into educators’ hands at a low cost is crucial to support AFRL’s ongoing efforts to multiply human research efforts by a thousandfold and to send the message that science is for everyone, said Maruyama, a principal materials research engineer based in AFRL’s Materials and Manufacturing Directorate.

“We need more people doing research — there are simply not enough of us,” Maruyama said. “If we don’t catch students young enough, perhaps by middle school, even, then they’ve effectively already gotten the message that science is not for them, and we really need to change that. And we need the people who are doing science in the U.S. to better represent America’s general population.”

Autonomous experimentation can effectively lower students’ barriers to entry into scientific fields by exponentially decreasing the cost of doing research, Maruyama said.

All told, the average schoolteacher with access to Maruyama’s free open-source software on the Web and a roughly $300 budget can build their own ARES-enabled autonomous 3-D printer for individual classroom use by purchasing hardware that is widely available online. Maruyama and three colleagues recently published an open-access article describing the process of calibrating a low-cost fused deposition modeling 3-D printer system using similarly affordable components, Maruyama said.

Dr. Kristofer Reyes, an assistant professor of applied mathematics at the University of Buffalo, is currently leading efforts to kickstart a self-driving autonomous experimentation lab in its School of Engineering and Applied Sciences. The lab, projected to open in January 2024, will house one of the first educational programs to utilize Maruyama’s ARES OS software, Reyes said.

The lab and ARES will feature strongly in an undergraduate course that Reyes will teach this spring for the university’s newly minted Department of Materials Design and Innovation, titled “Experimental Design for Materials Development.” The course blends the teaching of autonomous principles related to computer science, machine learning and materials science applications, Reyes said.

“ARES was sort of the natural choice for the framework for this self-driving lab,” Reyes said. “This is how research is going to be done in the future, so we’re giving our students early access right out of the gate to become familiar with autonomous materials science and technologies.”

Among other things, Reyes said, he expects that his students will be able to utilize the new lab and ARES software to conduct metamaterial study, a process by which they can print accurate scale models of various materials and learn how to optimize their structure with respect to their individual properties.

Educational ARES software makes tackling new projects like this less intimidating, Reyes added.

“It lowers the barrier for my students and for people like me who don’t have a lot of hardware interfacing experience,” Reyes said.

Dr. Emily Fehrman Cory, principal consultant at Dayton-based Airship Consulting and former AFRL employee, is another community partner currently initiating efforts to transition Educational ARES to the classroom. Fehrman Cory first crossed paths with Maruyama when she worked as a program manager and co-lead for America Makes in AFRL’s Materials and Manufacturing Directorate in 2015.

As co-workers, Fehrman Cory and Maruyama connected over their shared interest in carbon nanotube research and commitment to STEM programming. When she kickstarted Airship Consulting two years ago, Fehrman Cory said, she reached out to Maruyama to ask how she could help to spin Educational ARES out into the wider world.

“As a transition agent, I have been trying to line up opportunities around ARES to further develop this for launch into the STEM education field,” Fehrman Cory said. “Part of this effort includes looking at how we can package [ARES] in a way that is very low cost and easy for schools to adopt. Benji is trying to take [ARES] from the Air Force into the community, and we are trying to bring the community in to meet him.”

Right now, Fehrman Cory’s effort to help roll out ARES STEM programming into local schools is taking the form of engagement with students and faculty at the University of Dayton, or UD. Fehrman Cory joined forces with Michael Moulton, a Faculty of Practice at UD’s School of Engineering and the Stitt Scholar Program director, to lead a team of multidisciplinary undergraduate students who were accepted into this year’s UD Stitt Scholar Program cohort. The Stitt Scholars, all of whom are students in UD’s School of Engineering, School of Business Administration or College of Arts and Sciences, will complete a paid internship experience spanning one full academic year that is typically tied to a local technology-based or -enabled entrepreneurial effort. This year, three of Moulton’s Stitt Scholars selected Educational ARES as their internship focus.

The short-term target goal, Moulton said, is for these three students to develop an Educational ARES OS-based software curriculum in support of a STEM summer camp program.

However, Moulton’s students are also operating with the long game in mind, conducting market research and using cost-benefit analysis to determine where the most reliable, cost-effective 3-D printer parts can be purchased. Ultimately, they want to find a way to affordably package a dependable hardware solution alongside ARES software and offer it to teachers as a contained kit to make it easier for them to learn how to implement the technology.

“The students working on this project have already identified some reasonable hardware solutions [to enable autonomous 3-D printing] and are now focused primarily on developing curriculum to support moving this into schools,” Moulton said. “It became pretty evident relatively early in the process that without a well-established curriculum to provide alongside the hardware and software, that integration would be very difficult.”